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The scaling approach to the irreversible epitaxial growth gained wide recognition due to its ability to
describe with the use of a universal function the island size distributions �ISDs� corresponding to a broad range
of experimental conditions. The approach, however, is operative only in the case of large average island sizes
sav and large diffusion to deposition rates ratios R. Physically this corresponds to long deposition times and/or
high temperatures. We argue that the ISDs exhibit yet another universality property which holds for much
broader range of growth conditions, in particular, for low temperatures �small R� and small sav �short deposi-
tion times�. We show that the normalized ISDs corresponding to the same sav are accurately described by the
same universal distribution.
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Epitaxial growth is considered to be a promising tool for
the fabrication of nanostructures of technological interest.1–3

Because the growth at the surface is an inherently nonequi-
librium phenomenon,3 the understanding of underlying mi-
croscopic kinetics is key to the development of efficient en-
gineering techniques. The kinetics, however, are very
complex, judging, e.g., from the complexity of the nano-
structures they produce.3 Because of that, their theoretical
study is currently restricted to simple models, such as the
model of irreversible growth �IG�.2,4

The IG model describes the growth of islands on a crystal
surface in terms of a few simple kinetics. The deposition is
described by random creation of atoms at the surface at the
rate characterized by a homogeneous flux F. After the land-
ing, the atom may meet previously deposited atoms either
immediately or after some number of intersite hops per-
formed at a constant rate h. In both cases the atom gets
attached either to another mobile atom—in which case a new
island is nucleated—or to an existing island. The attachment
is supposed to be irreversible, i.e., the atom cannot leave the
island to which it belongs. Rearrangement of atoms within
the islands, however, is allowed. These rearrangements may
change island morphologies from ramified dendritelike ap-
pearance at low temperatures to compact polygonal shapes at
high temperatures in case of monolayer-high islands �the
case of two-dimensional �2D� growth�5 up to various three-
dimensional �3D� morphologies if the hopping and nucle-
ation on the tops of 2D islands are allowed.1 Because the
intraisland kinetics are usually system specific and in general
are poorly known, considerable popularity gained the ap-
proach which avoids detailed description of these kinetics by
focusing mainly on some universal features of the IG com-
mon to all epitaxial systems. This approach has been based
on the ideas of scaling.4,6–15 Central to it is the expression for
the island size distribution �ISD�,

Ns = ��/sav
2 ��f�s/sav� + O�1/sav� + ¯� , �1�

where Ns is the density of islands of size s, � the coverage,
sav the average island size, and f the scaling function. The

second term in the brackets is our estimate of the error in-
troduced by the replacement of the discrete differences with
respect to the island size s=2,3 , . . . in the mean-field rate
equations �REs� of the type of Eq. �6� below by the continu-
ous derivatives � /�s. This replacement is a major approxima-
tion made in derivation of Eq. �1�.11,12,16 For the functions of
the scaling variable x=s /sav, such as f in Eq. �1�, the ap-
proximation of the derivative �f /�x by the finite difference
�and vice versa� introduces the error of order of the step size,
or O�1 /sav� in our case �we assume that the error in the RE
leads to similar error in the solution�. Finally, by dots in Eq.
�1� we denoted the corrections to f due to the terms omitted
in the RE used in the derivation.

Thus, according to Eq. �1� the scaling is expected to hold
in the case of large islands �sav→��.16–18 Besides being
large, the islands should not coalesce which in the case of
physical extended islands restricts the coverage to small val-
ues of ��0.2.4,18 Further, the scaling analysis shows4,16–18

that in 2D

sav � �2/3R1/3, �2�

where

R = h/F . �3�

With coverage � being small, from Eq. �2� it is seen that the
only way to get large sav is to perform the growth at large R.
Because of the cubic root in Eq. �3�, the dependence of sav
on R is not very strong. For example, to increase the average
island size three times, R should be enlarged almost thirty-
fold. So to make the O�1 /sav� term in Eq. �1� negligible,
quite large values of R are needed. E.g., in Ref. 18 an ap-
proximate scaling was found for R�107, while in Ref. 19
the exact scaling was not found even for R as large as 109.
Because increasing R by reducing the flux F in Eq. �3� would
require simultaneous prolongation of the deposition time,
more practical is to increase h by raising the
temperature.8,9,20 Therefore, large-R deposition would nor-
mally correspond to high-temperature growth.
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Thus, the scaling approach is operative only in the case of
large islands and high-temperature growth, while small is-
lands and/or low-temperature growth21–23 are currently being
described with the use of the kinetic Monte Carlo �kMC�
simulations and the RE.18 These approaches, however, re-
quire knowledge of microscopic kinetics which are poorly
known, especially when the phenomena responsible for the
reversibility are of interest. The latter can be generically de-
fined as those which allow the atoms detach from the
islands.24,25 Their study should provide us with a clue to the
mechanisms of growth of the nanostructures of practical in-
terest, such as the periodic arrays of size-calibrated islands
known as the quantum dots.3 Because the islands grown dur-
ing the IG are of very different sizes and are randomly scat-
tered over the surface,1,4,6–11,13–15 it is the reversible growth
and accompanying it phenomena that could be responsible
for the growth of the quantum dot arrays.

A major advantage of the scaling approach is that its use
does not require any knowledge of microscopic kinetics, pro-
vided the growth remains irreversible. The parameters F, h,
R, and � �we will call them the growth parameters� are varied
externally, while sav and f entering Eq. �1� can be found from
the measured ISD Ns. As long as the growth remains irre-
versible, the scaling functions obtained at different tempera-
tures should coincide. Deviations from the scaling at high
temperatures mean that irreversible phenomena begin to in-
fluence the ISD. These deviations can be used to assess and
quantify these phenomena without any explicit knowledge of
the microscopic kinetics.8,9,20,26

The aim of the present Rapid Communication is to pro-
pose a universality principle similar in the spirit to the scal-
ing approach but which would be applicable at all tempera-
tures and all island sizes. The analog of Eq. �1� in our
approach plays the equation

Ns = N��s,sav� , �4�

where N is the total islands density

N = �
s�2

Ns = �� − N1�/sav � �/sav �5�

and � the normalized ISD: �s�2��s ,sav�=1.
Similar to Eq. �1�, Eq. �4� contains only experimentally

observable quantities. The difference is that instead of one
universal function f�s /sav� of the scaling theory, in our ap-
proach we have a one-parameter family of functions
��s ,sav�, if the second argument is treated as a parameter.
This lesser universality in the ISD shapes is compensated by
the fact that Eq. �4� is expected to adequately describe the
ISD at all admissible values of the growth parameters and at
all average island sizes, including very small ones. Because
the number of island sizes s over which the deposited atoms
are distributed grows in proportion to sav �see Figs. 1 and 2�,
for large values of sav good statistics is hard to gather. For
example, with the same total statistics as in large-sav experi-
ments of Ref. 8 at T=207 °C, in the sav=3 case the statistics
per island size would be about 40 times better �see Fig. 1�
and this without any restraints on the growth temperature or
its duration.

To substantiate our approach we will use the conventional

tools used in theoretical studies of the surface growth: the
mean-field RE and the kMC. In Refs. 2, 4, and 11–13 Eq. �1�
was derived as an approximate asymptotic solution of the
RE. It is remarkable to note that our Eq. �4� satisfies the RE
exactly. This is most easily seen if the REs are cast in the
form proposed in Ref. 7,

dN̂1

d�̂
= 1 − 2�1N̂1

2 − N̂1�
s�2

�sN̂s, �6a�

dN̂s

d�̂
= N̂1��s−1N̂s−1 − �sN̂s�, s � 2, �6b�

where N̂s�R1/2Ns, �̂�R1/2�, and �s are the capture numbers.
Equations �6a� and �6b� will coincide with Eq. �12� of Ref. 7
after substitution,

�s = sp, �7�

where for small island sizes good approximations are consid-
ered to be p=0 for point islands, p=1 /2 for compact islands,
and p equal to the inverse fractal dimension for ramified
islands �see Ref. 7 and references therein�. For large islands
more sophisticated models have been proposed. For ex-
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FIG. 1. �Color online� Points to the right of thin vertical line: the
normalized ISD for different values of R=h /F; points to the left of
the line: rescaled density of mobile monomers; dashed line: solution
of the rate Eqs. �6� for point islands ��s=1�; and dashed-dotted line:
the Poisson distribution normalized to sav=3. The statistics were
gathered over 15–30 kMC simulation runs.
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FIG. 2. �Color online� Same as in Fig. 1 for sav=6 but without
the Poisson distribution which at this value of sav significantly de-
viates from the data.
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ample, in Ref. 14 it was found that for large point islands �s
should grow linearly with x=s /sav for x�1; in Ref. 25 a
quadratic dependence on x was substantiated. With the initial

condition N̂s=0 at �̂=0, the solution of Eq. �6� for all these
choices of �s will depend only on s, sav, and the evolution

parameter �̂. But sav��̂� grows monotonously with �̂, so the

inverse function �̂�sav� can be introduced. Hence, �=Ns /N

= N̂s / N̂ is a function of only s and sav, which proves the
validity of Eq. �4� at the mean-field level.

It is to be noted that RE �6� is not exact. For example, it
neglects the direct impingement terms corresponding to
deposition of atoms on island tops. These terms have a
power-law dependence on coverage and at small � are also
small.13 To assess the influence of the neglected terms on the
universality we, following established routine,4–7,10–15,17,19,26

compared the RE predictions with the kMC simulations in
which the direct impingement was treated exactly. In Figs. 1
and 2 an excellent agreement between the RE predictions
and the kMC simulations of the point-island model on the
square lattice can be seen. To facilitate comparison with
other simulations we plot the data using the scaling vari-
ables: s /sav as the abscissa and the scaling function sav� as
the ordinate �cf. Eqs. �4� and �5� with Eq. �1��. As is seen, the
size distributions are identical within the statistical uncer-
tainty for all values of R studied.

The simulations were performed with the use of the ac-
celerated kMC algorithm appropriate for large low-density
systems which we developed recently.27 Detailed explanation
of the algorithm and its explicit application to the one-
dimensional �1D� growth can be found in the above paper.
Here we only point out two essential simplifications brought
out by the rectangular geometry in the 2D case. First, be-
cause the hops along two orthogonal directions are indepen-
dent, probability distribution of the boxed atoms has a sepa-
rable form

p2D�i�,t� = p�ix,t�p�iy,t� , �8�

where p�ix,y , t� is the solution of the 1D problem explicitly
given by Eq. �4� of Ref. 27. Because the probability for the
boxed atom to leave the box is equal to half the sum of the
probabilities over the box perimeter, from Eq. �8� and from
the normalization �ip�i , t�=1 it follows that this probability
is twice the function Pend�t� of Ref. 27. So the time-
dependent rate of the system evolution is given by formula
�7� of Ref. 27 with the hopping part �the last two terms�
multiplied by two.

The point-island model was chosen in order to facilitate
the kMC simulations �the model is being widely used in the
field mainly for this reason�. From the RE analysis above,
however, it can be seen that the universality should hold for
extended island models as well. This is confirmed by the
kMC simulations in Ref. 27 where in Fig. 3 one can see an
excellent agreement between the ISDs for extended 1D is-
lands simulated for three values of R=106, 109, and 1012 at
coverages �=0.1, 0.01, and 0.001, respectively. From the
scaling relation sav� ��3R�1/4 �see Ref. 4� follows that the
values of sav were approximately equal.

The most important property of the universal distributions

shown in Figs. 1 and 2 is that they can describe ISDs at small
values of R where the scaling approach cannot be used even
for large islands. In Fig. 1 additionally is shown the Poisson
distribution which corresponds to the deposition of immobile
atoms �R=0�. The excellent agreement of the Poisson ISD
with the kMC shows that in the sav=3 case the universality
holds down to very small values of R→0. In the case sav
=6 shown in Fig. 2, however, the Poisson distribution �not
shown� is quite different from the simulation data. We as-
cribe this to the fact that, as can be seen from Fig. 3, for R
�102 the coverage would exceed one monolayer, while ad-
missible values of theta are ��0.2.4

The ISDs obtained in our simulations qualitatively agree
with the low-R ISDs presented in Fig. 6�a� of Ref. 18 as well
as resemble some ISDs from Refs. 28 and 29. This latter
similarity, however, is accidental; in Sec. 3.3 of Ref. 18, it
was stressed that the low-R behavior is distinct from the
asymptotic behavior found in Refs. 28 and 29.

To conclude, in this Rapid Communication we substanti-
ated a universality principle obeyed by the ISD during irre-
versible epitaxial growth which is exact at the level of mean-
field rate equations and also agrees within small statistical
errors with the exact kMC simulations. The principle states
that the normalized ISD remains invariant under such
changes in growth parameters that leave the average island
size sav unaltered. In this respect our approach is similar to
the scaling theory which additionally establishes connection
between ISDs corresponding to different sav. The scaling,
however, takes place only at asymptotically large values of
sav and of the hopping to deposition rates ratio R while the
universality holds at all allowable values of the growth pa-
rameters. So we expect that the use of the universality in
interpretation of experimental data will lead to easier identi-
fication and quantification of reversibility phenomena than
the approaches based on the scaling theory which currently is
being used for this purpose, as explained below. Quantitative
description of the reversibility phenomena is important from
technological point of view as they contribute to the growth
of regular nanostructures of practical interest.

From experimental standpoint, we see the following ad-
vantages of our approach. �i� In contrast to scaling approach,
there is no need in enhancing R by increasing the tempera-
ture and/or by slowing down the deposition—thus jeopardiz-
ing the growth irreversibility. The universality may hold at
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FIG. 3. Solid lines: the contour lines corresponding to constant
values of the function sav�� ,R�. The lines are drawn through the
pairs of R and � values �solid circles� obtained in the kMC simula-
tions. The dashed lines are calculated on the basis of the rate Eq.
�6�.
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any values of these parameters and can be observed during
fast deposition at low temperatures when the irreversibility is
easier to maintain. �ii� In our approach the growth time can
be strongly reduced because, in contrast to the scaling ap-
proach, it does not require that islands were large. This, inter
alia, makes our approach applicable to the cases when only
very small islands are of interest, as, e.g., in the metallic
surface-catalytic systems where the efficiency of the catalyst
strongly depend on the size of the atomic clusters in the
range of three to ten atoms.21,22 The scaling approach cannot
be applied in such cases. Furthermore, �iii� with small islands
one can gather much better statistics with the same effort
than in the case of large islands because there is less island

sizes corresponding to nontrivial values of the ISD function.
In our opinion, these advantages outweigh the necessity to
grow island ensembles with the same sav to have identical
ISDs. From the log-log contour plot in Fig. 3 it is seen that
the pairs of values of R and � corresponding to the same sav
lie on the curves with very small curvature, so the linear
interpolation should be quite efficient. This technique was
used in our kMC simulations.
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